
N94- 33829

The Importance of Robust Error Control in Data Compression

Applications

S.I.Woolley

Dept. Electrical Engineering
University of Manchester

Oxford Road, MI3 9PL, U.K.

Phone: 061-275-4538
Fax: 061-257-3902

san dra@h pc. ee. man. ac. u k

Abstract

Data compression has become an increasingly popular option as advances in information

technology have placed further demands on data storage capacities. With compression ratios

as high as I00:I the benefits are clear, however; the inherent intolerance of many compression

formats to error events should be given careful consideration.

If we consider that efficiently compressed data will ideally contain no redundancy, then the

introduction of a channel error must result in a change of understanding from that of the

original source. Whilst the prefix property of codes such as Huffman enables

resynchronisation, this is not sufficient to arrest propagating errors in an adaptive
environment. Arithmetic, Lempel-Ziv, discrete cosine transform (DCT) and fractal methods

are similarly prone to error propagating behaviours. It is, therefore, essential that

compression implementations provide sufficient combatant error control in order to maintain

data integrity. Ideally, this control should be derived from a full understanding of the

prevailing error mechanisms and their interaction with both the system configuration and the
compression schemes in use.

Introduction

Data compression is essentially the process of identifying and extracting source redundancy in
order to reduce storage requirements. Since the nature of encountered redundancy is dependent

upon the type of source, e.g. image, audio, video, text, program source, database,

instrumentation, etc., the best compression performance is achieved by a source-specific

algorithm. For example, an image source may contain a large amount of positional

redundancy (e.g. a raster scan of a vertical line) which could be efficiently exploited. However,

an algorithm of this type would be of little benefit if applied to a textual source. Accordingly,

each of the main source categories have their own families of compression algorithms.

The following text provides an introduction to some important compression concepts,

methodologies and behaviours, with the aim of demonstrating the effects of compression on

data integrity and the need for adequate error control. Where possible, examples have been
used to illustrate this information such that a prior understanding of compression methods

and behaviours is not required.

Advantages and Disadvantages of Data Compression

,_e__ PAGE BL.ANK NOT F'ILke_:_(._

487

In addition to the increasein data storagecapacity, real-time compressionimplementations
can enhancedata transferrates, improve network performanceby reducing traffic loads on
lines and, via the encryptionprocess,provideadditional data security against unauthorised
access[I].

Thereare, however,disadvantagesinvolvedin datacompression.Firstly, the compresseddata
is significantly more vulnerable to error, as will bedemonstrated below. Secondly, the
majorityof softwarecompressorsdo not work in real-timesuch that data retrieval and storage
can be significantly delayed. This is particularly noticeablewith most imagecompression
methods,althoughthedelayis,ofcourse,dependentonsystemperformanceand source size. In
addition, the plethora of algorithms currently available can result in compatibility problems

when transferring data between systems. For example, the absence of an early compression

standard for DAT (Digital Audio Tape) drives resulted in two competing and incompatible
implementations, such that compressed DAT tapes cannot be freely transferred between

systems which would otherwise be. compatible [2]. Compatibility is also deteriorated, to some

extent, by the existence of a variety of patents which make bespoke compressors more
attractive.

Channel Errors and Data Integrity

There are two types of channel errors; amplitude errors and phase errors. In dlgital form

amplitude errors appear as inversions of bit values whilst phase errors appear as the insertion
or extraction of one or more bits in the data stream. As shown in Figure I, amplitude errors

affect only those bits which are directly afflicted, whereas phase errors result in a stream of

amplitude errors which propagate to the end of the information source or until the next

resynchronisation marker.

 ,!11olo11111olo111ololo111o1 11[°1°1111[°1°i11°[°i°[11°[

,,) 111°1111111°1'°111°1°1°111°1<
I

1 Bit Amplitude Error

! ! II I 1 I ! I i

1 0 1 1 0 0 1 0 0 0 1 0 1

-1 Bit Pha_eI Error

Figure 1 : Example of Channel Errors

a) Source data, b) Source data with channel error imposed, c)Resultant bits in error.

All systems are prone to error mechanisms of one sort or another, and with an understanding

of these phenomena the subsequent, or secondary, effects on data integrity can be ascertained.

For example, in magnetic tape recording systems a primary source of errors is the existence of

embedded asperities, introduced either via the manufacturing process or via external
contamination. The secondary effect of these mechanisms is the burst error syndrome caused

directly by a departure of head-to-tape contact which attenuates signal amplitude. This

phenomenon is referred to as a dropout, and where the attenuation results in effective signal
loss then, as well as a burst of amplitude errors, the system may also experience a loss of

synchronisation, i.e. a phase error. Therefore, although these events are comparatively rare

their potential for error propagation makes them the dominant contributors to the overall
error rate. So whilst bit/byte error rates are important indicators of system performance, the
distribution and characterisation of error events are similarly important, and can be used to

determine suitable error control measures i.e. interleaving, resynchronisation markers and

error control coding.

488

Lossy and Lossless Compression Techniques

The amount of compression that can be achieved by a given algorithm depends on both the

amount of redundancy in the source and the efficiency of Its extraction. The very high

compression ratios often quoted generally relate to hlgh-redundancy sources such as databases

or to lossy compressed formats such as fractal image representations.

Lossless techniques are, of course, required by many applications, such as computer disk

compression, where exact replication of the original is essential. Alternatively, lossy

compression techniques, where only a close approximation of the original is reconstructed,

can be successfully applied to many image, video and audio applications where losses outside
visual/aural perception can be tolerated, and where the additional compression achieved is

highly desirable. For example, the philosophy behind the lossy DCT (Discrete Cosine

Transform) compression of images is that the human eye is less sensitive to high-frequency

information. Further compression can, therefore, be achieved by more coarsely quantising

hlgh-frequency components of an image without significant visual deterioration.

There are, however, some image compression applications where certain quality and/or legal

considerations dictate the use of lossless compression. For example, medical imaging [3] and

deep space communication of imagery data [4].

Static and Adaptive Implementations

Compression algorithms remove source redundancy by using some working definition of the
source characteristics, i.e. a source model. Compression algorithms which use a pre-deflned
source model are referred to as static, whilst algorithms which use the data Itself to fully or
partially define this model are referred to as adaptive.

Static implementations can achieve very good compression ratios for well defined sources;
however, their inability to respond to changes in source statistics limits their usage. If applied
to a source significantly different from that modelled, a static aigorithm could result In source
expansion rather than compression.

In contrast, adaptive algorithms are more versatile, and will update their working source
model according to current source characteristics. However, adaptive implementations have
lowered compression performance, at least until a suitable model Is properly generated. In
addition,

"A major problem with any adaptive compression method Is that a single error on the
communlcatlon channel or storage medium can cause the sender and recelver to lose
synchronisation and can result in error propagation that In the worst case can corrupt all data
to follo w. "[5l

Compression Methodologies

The following text presents a selection of commonly used compression methods and

investigates the effects of channel errors on data integrity. Image sources and bit error maps
are used to illustrate these phenomena since the effects of any errors are more readily

appreciated.

489

Hu_man Coding

Huffman compression techniques are examples of statistical coding, where character

frequency statistics are used to allocate appropriate codewords for output. The basic

philosophy is that compression can be achieved by allocating shorter codewords to the more

frequently occurring characters (a simple example of this technique is the Morse Code where,

for example, E= * and Y). As shown in Figure 2, by arranging the source alphabet in

descending order of probability, then repeatedly adding the two lowest probabilities and

resorting, a Huffman tree can be generated. The resultant codewords are formed by tracing the

tree path from the root node to the codeword leaf.

_Atext Ge_rat_
V_harat_ _ _ Codewe_

A 03,03,03,¢,,. i0 ,0 'IB 0.27 0.27 0.27 0._8-J.

-- I o,1 0.9 c.o O.llr.,,lo.,, ,A--OO,F ,C-ll,
]05 0.,, ._-,0,E 07 1 -4 (D=101)

F 0.04 F 0"12 "--T] E=1000

0.08 0.04
(E=1000) (F=I001) F=1001

Figure 2 : An Example of Huffman Coding

The relative probabilities and, hence the Huffman tree, can be derived by the compressor in

three ways. Firstly, in static implementations the probabilities are predeflned. This enables

rapid and efficient compression and decompression but only for sources whose character

frequencies are accurately described by those of the algorithm. Secondly, the probabilities can

be generated by an initial pass of the data to count the character frequencies, but this requires

an additional second pass to perform the compression. Thirdly, the probabilities (and hence

the codewords) can be adjusted dynamically during the compression process. This adaptive

Huffman method, although more complex, can still perform quite rapid compression and

decompression and has the advantage of being more versatile as well as being able to respond

dynamically to changes in the source.

Compression performance can be improved by increasing the order of the source model (i.e.

considering the context of incoming characters). For example, when the letter "q" is parsed

from a stream of english text there is a very high probability (approx. 95%) that the letter "u"
will follow.

I111 IIx Io1111olollol xllolol1111 Ilol 1111101o1111o101111ololol
Icll D IIAIIBI[AIIcIIBII F HAll E I

Amplitude Error

111 1101010 010 II0[0]I 11011 llO]O]li 010 11010]0

C E A F D F A E

-I Bit Phase Error

111 xlol Iolo ol1 ol0 xlx 011 xlololllolo xlololo
C E B A C B F A E

Figure 3 : Resynchronisation of H_an Coded Data in the Event of Channel Errors

49O

There is, therefore, no single Huffman method, but rather a whole family varying in adaptlvlty
and order[6]. The specific effects of any transmission errors on Huffman compressed data

would therefore depend on the particular implementation as well as the source. Fortunately,

however, some generalisations can be made. Firstly, static implementations have an in-built

resistance to error propagation. This is due to the prefix property common to all Huffman

codes, whereby no code is a prefix of any other. For example, using the generated codewords in

Figure 1, frO0 is a permitted codeword then no other codeword may begin with the sequence 00,

similarly if I01 is a permitted codeword then no other codeword may begin with the sequence

101, and so on. Figure 3 illustrates the effects of an amplitude and a phase error, demonstrating
the code's self-synchronising ability.

Adaptive Huffman implementations, however, are not protected by this facility since;
"The fact that the sender and recelver are dynamlcally redeflnlng the code Indlcates that by the
tlme synchrontsatlon Is regalned, they may have radlcally different representatlons of the
code" [7].

Figure 4b below shows the effects of a single bit error on an image source compressed by an
adaptive Huffman scheme.

i ¸ ?i_ _

a) Original b) Adaptive Huffman with 1 Bit Error

c) Arithmetic Compression with 1 Bit Error

Figure 4 • Examples of Bit Errors on Arithmetic and Adaptive Huffman Formats

Arithmetic Coding

The method of compression employed by Huffman compression coding involves the allocation

of shorter codewords for more frequently occurring characters. It is, however, unable to

allocate fractional codeword lengths, so that a character must be allocated at least a one-bit

codeword no matter how high its frequency. Huffman coding cannot, therefore, achieve

optimal compression.

491

Arithmetic coding [8] offers an alternative to Huffman coding, enabling characters to be

represented as fractional bit lengths. This is achieved by representing the source as a real

number, greater than or equal to zero, but less than one, denoted as the range [0,1). As shown in

Figure 5, each character of the source alphabet is allocated a proportion of this range according
to its probability. As data symbols are parsed from the source, the working range is reduced

and a real number is generated which can then be transmitted and decompressed via a paranel

process. The source sequence shown in column four of Figure 5 illustrates this process. As can

be seen the initial range is [0, I) which is reduced to [0.2,0.5) when a "B" is encountered. The next

symbol, an "A", requires the range [0,0.2), i.e., the first 20% of the working range, [0.2,0.5),

hence the new range [0.2,0.26).

Source RelaUve Allocated Source Denoted Range

Characters Probabil/tie Range Sequence

A 0.2 [0,0.2) --- [0,1)

B 0.3 [0.2,0.5) B [0.2,0.5)

C 0. I [0.5,0.6) A [0.2,0.26)

D 0.2 [0.6,0.8) C [0.23,0.236)

E 0. I [0.8,0.9) C [0.233,0.2336)

F 0.1 [0.9,1.0) F [0.23354,0.2336
)

Figure 5 : An Example ofAr/thmeUc Cod/ng

The handling of the necessary floating point arithmetic and the need for special terminating

sequences makes arithmetic coding more complex than Huffman coding. However, the

algorithm achieves close to optimal compression, and, like Huffman coding, can be increased

in order and adaptlvity.

Unfortunately, arithmetic coding, whether static or adaptive, is particularly vulnerable to

errors, whereby a single bit error can result in a complete scrambling of all subsequent data

[Teuhola91], as demonstrated in Figure 4c.

DATA SEQUENCE : "rile THREE TREES"

Prev/ous

Character

or String

T

H

E

T

TH

R

New

Characte

r

T

H

E

T

H

R

E

Generated Dictionary
Codeword

Di

D2

D3

The string "TH" already
exists so fl new

dictionary codeword is

not _enerated.
D4

D5

Meaning
of

Dictionar

Y
Codeword

TH

HE

ET

DI+R

=THR

RE

Code

Output

T

H

E

R

Meaning

of Output

T

H

E

TH

R

472

E E 156 EE E E
E T

ET

R

RE

R

E

Thestring "ET"already
existssoa new

dictionary codewordis
not _enerated.

D7

Thestring "RE"already
existssoa new

dictionary codewordis
not{_enerated.

D3+R
=ETR

D3 ET

E D8 D5+E

=REE

D5 RE

E S D9 ES E E

S End of S S

data

Figure 6 : Simplified Example of LZ78 Compression Process

The original source conta/ns 13 8-bit characters (=104 bits) and the compressed output contains
10 9-bit codewords (=90 bits).

Lempel-Ziv Methods

There are two Lempel-Ziv compression algorithms: LZ77 [10] and LZ78 [II], both of which

compress data by replacing repeated strings by defined codewords. LZ77 uses a so-called sliding

window from which repeated strings are identified and referenced by a coOed block Indicating

the position and length of the string. In this way LZ77 creates a compressed format which

comprises uncompressed data interspersed with pointers to recognised strings. This simple

format enables rapid decompression; however, compression is comparatively slow since

continuous searches of the sliding-window are required.

Alternatively, the LZ78 algorithm (and similarly LZW [12], an improved and patented version)

creates a dynamic embedded dictionary designed with a self-referencing structure. The

algorithm parses the data source for unique strings (i.e., strings not previously encountered) for

which it allocates dictionary codewords that can be used to replace the string ff it occurs again.
The implementation of this method is best explained by means of a simple example as shown

in Figure 6 [reading left to right, row by row). In its simplest form all of the output (characters
and dictionary cooewords) are in 9-bit form, but can be increased to 10, 11 or 12 bits as required

by sending reserved codewords (control flags). These are also used to fully or partially reset the

dictionary when it fills or when significant deterioration in compression performance is

detected. The simplified example shown in Figure 6 describes dictionary entries as DI, D2, D3

etc., and a high-redundancy data sequence ("THE THREE TREES", with spaces ignored) is used
in order to demonstrate the compression of repeated strings.

During compression, the serf-referencing nature of the dictionary enables longer and longer

strings to be replaced by just one dictionary codeword, and there is no need to explicitly write

the dictionary contents since it can be regenerated via the same process on decompression.

Initially the compression performance of the algorithm is poor, but, as strings are re-
encountered and replaced with dictionary codewords performance increases rapidly.

The speed and versatility of the Lempel-Ziv implementations have made them particularly

popular and have led to the development of a large and growing family of related algorithms

493

([13]refers to 12 variants of Lempel-Ziv methods). Implementations of Lempel-Ziv type

algorithms can be found in most computer disk compressors and on tape drives including DAT.

Channel Errors in LZ78 Compressed Data Formats

The introduction of amplitude errors into the compressed format can have the following

effects:

1, a small number of amplitude errors restricted to the locality of the original,

2. a propagation of amplitude errors from the point of error location to the end of the

entity, and

3, a complete loss of data either occurring abruptly or following a variable-length

burst of amplitude errors.

These outcomes are explained in Figure 7 by considering the types of compressed source
involved.

The Effects of Channel errors on LZ78

Location of Description
Error

a) In an output
character.

b) In an output

dictionary
codeword.

Compressed Data

(i) The character value is
altered.

(il) The character is

transposed into a

dictionary codeword.

(iii) The character is

transposed into a control

flag.

(i) The error transposes the

dictionary codeword into

a n o t h e r [recognised]

dictionary codeword.

(ii) The error transposes the

dictionary codeword into an

unrecognised dictionary
codeword.

(iii) The error transposes

the dictionary codeword

into an output character.

(iv) The error transposes the

dictionary codeword into a

control flag.

Resultant Effect on Data Integrity

The error would remain in the

decompressed output and be

replicated for each repeating string
in which the character was parsed.

*The difference in length alone will

produce a synchronisation loss.

**The source will be corrupted or

lost since control flags adjust byte

lengths, manipulate the

dictionary, and indicate the end of
data.

The referenced string is replaced by

an erroneous string. If these are of
different lengths then

synchronisation will be lost, and

any future references to the newly

created dictionary codeword will be

affected in the same way.

The decompressor will be unable to
identify the codeword and

subsequent data will be lost.

As*

As _

494

c) In a control
flag.

(i)The control flag is
mistaken for an output

character or a dictionary
codeword.

AS _

Figure 7 : A Description of the Potential Effects of Channel Errors on an LZ78 Compressed
Source.

Figure8 below shows 3 different bit error maps: a), b) and c), of LZ78-type compressed sources

which correspond to 1., 2. and 3. above. These results were generated via the comparison of the

original source with the decompressed output of the same source, but with a single-bit error
introduced into the compressed form.

211
281

351

dgl

G31i

B41

gll
g81

lg51
1121

.¢

,¢

<
,¢
,¢

<

<

,¢

<

<

,(

a)

SIHUI_TII_I OF ERROR PROPI_-_ITIOH BEHAUIOURS

DECOHPRF_SEB DATA

8:_T_ 1:| Error:X Hiamin 9 -it-
1491 m ,_ _m _ • m m m "i i =tiiiii

1611 _, ;,i •
1681 •

•: I! I _q ' | •

. _ii_iiixx_._i:"c_:x_iii_iiiiiiii!iiiii[x:xx_i;;x:_ill i;iiiil •
2451_ •

2S21 •
2Sgl •

2731.2661" ,. iiii__iii__<"iii i "' !!!i!i!i iiiX_!iii!!!_i: _ •

rro¢_l o_1_ I_oy TO oon(in_o

b)

495

SII4UI_TIOH OF ERROR PROI_flTIOH BEHflL_OURS
DECOHPRESSED l_flTn

B:II;] 1:| E :x M_ui-9:_
til _ " ; "' ' _ _ , ;: : L ' _ 'fit+ 'i+ ill ti_ tl' il_i[_ tilt'_i I

21.1t l[i i i i i IT[_]_ _]111111 III IIl11111Jlll III III I IIIIIIIJ_L_i I u]liM_ Ll]u]i,iiliJllrrrliJliillil,,,,,,,
281LJ ' ' ' ' ' ' ' I ' ' ' '_[JLLLIJ[I-35111' ' l II , , , , , , , ,TI , , ,, ,, _]]_LLLL uzLuzINtIill III IIIII I IIIII IIIIII

_it _iilllitil//lllllll II1111111 IIIIIII1 II
•12i 1111-111
.lfl-itttttilll]llt"illi'llliiiii/lltt /illlllll llillllll'L]__]lll i 1 IIIIIIIli

Ht t "
f,,"',. ,,,L,,,,, <
e41TR_rlIIILL_/I 111111111 III]TRT[_TRIIIIIIIIJlIIIIIIIII •
lil.lllllllllll[_qTF_T_ll II[J]llll IIIII._ITT_IilI[IHIIIIIIIIIIIIII •_',_lHi]_lli_llllllll II " /ll/IIIIIIIIIIIIU <
g"it-H-_tlili i i i I I I-_t _l_-H-t ILHI i ,il i I I I I,, , , , , ,1, <

l°S 11-tttt-ft-1-1111 _1 l]lllllll] I 1FFIZI11 JJ_LLIJIUJ_[I I I 1i I I 11 I I •
t121 " <llill I •
....11_l_H_HH _,1 I1LLI'IIH Jill 111 IIIJ.LIlII I I I I I II I II11 IIII •:I:t:t_I_LLi IHHI_]]]]liiI I-]IlIIHI III]ILI l TI-_IIIIIILIIIIIIIIII

__/IIIIIIILIIJ_LLI_[J._LLLII-I- I1111[11 JLU_LL II rrH l!IHllllllllllll I •
.t. ilillllll iiiiii iiiiii iiii II IIII11/ l-HIll I/I I 1

l_oll _ ko_ to ooe"ltinuo

c)

Figure 8 : The effects of single amplitude errors on LZ78 compressed data.
a) Recovery, b) Error Propagation and c) Data Loss

Discrete Cosine Transform (DCT) Image Compression

The philosophy behind DCT image compression is that the human eye is less sensitive to high-

frequency information (and also more sensitive to intensity than to colour), so that
compression can be achieved by more coarsely quantising the large amount of high-frequency

components usually present. Firstly, the image must be transformed into the frequency

domain. Since it would be computationally prohibitive to transform even a low resolution

image in one full block, the image is subdivided. The developing JPEG (Joint [CCITT and ISO]

Photographic Experts Group) standard algorithm [14] for full-colour and grey-scale image

compression uses 8x8 blocks.

The DCT itself does not achieve compression, but rather prepares the image for compression.

Once in the frequency domain the image's high-frequency coefficients can be coarsely

quantised so that many of them (>50%) can be truncated to zero. The coefficients can then be

arranged so that the zeroes are clustered and Run-Length Encoding (RLE), whereby repeated
values are referenced and followed by a counter indicating the number of successive

occurrences, can be applied. The remaining data is then compressed with Huffman coding

(arithmetic coding has also been proposed but implementation has been hampered by patent

issues).

DCT compression, therefore, involves a number of processes, all of which combine to allow

extensive error propagation. An example of the effects of a single bit error is shown in Figure

9g. The RLE coding alone is prone to error propagation since the length or value of referenced
symbol repetitions can be altered by a single amplitude error. The JPEG standard addresses

this problem by providing "restart" markers which allow the decoder to resynchronise after a
transmission error [JPEG Version 4:USAGE]. This facility does not correct errors, but arrests

their propagation. The number of markers used is user defined and should be determined by the
channel error statistics, the error tolerance of the system, and the reduction in compression

which can be tolerated as a result of their insertion.

The lossy nature of the DCT method is shown in Figure 9. As can be seen in Figure 9b,

significant compression can be achieved without any visible loss in picture clarity. However,

496

by increasing the compressionperformancefurther lossesare seen to develop (particularly
lossyexampleswere chosensince the effectswere required to be visible after reduction for
inclusion in this document).

Thepresenceof artifacts aroundsharpedgesis referredto as Glbb'sphenomenon1151(pg225).
Theseare causedby the inability of a finite combinationof continuous functions to describe
Jumpdiscontinuities. Asshownin Figure9e,at highercompressionratios these lossesbecome
moresapparent, as does the blocked nature of the compressedform. Figure 9f shows a
differencemappingof the original and the highly lossydecompressedimagein which the loss
of edgeclarity canbeobserved.

This type of lossyness makesJPEGand other DCT-basedalgorithms unsuitable for non-
realistic images,e.g. line drawings, cartoons, etc., as can be seen by the large amount of
deteriorationin the geometricexampleusedin Figure i0.

Fractal Image Compression

A fractal, in simplest terms, is an image of a texture or shape expressed as one or more

mathematical formulae. It is a geometric form whose irregular details recur at different

locations, scales and angles, and which can be described in terms of formulae called affine or

fractal transformations [16]. Fractal image compression is achieved by dividing an image into
sub-blocks, each of which is then compared to scaled and rotated versions of the other sub-

blocks in the image. When sufficiently similar sub-blocks have been found for all of the sub-

blocks in the image, they can be referenced geometrically so that a fractal description is
obtained.

Unlike other image compression techniques, the fractal transform is a very asymmetric

process. The exhaustive searching for self-similarity requires intensive computational power,

but once expressed in terms of fractal transforms the image can be quickly decompressed.

Fractal compression is therefore best suited to WORM applications. For example, the Microsoft
multimedia encyclopaedia Encarta makes use of fractal compression to store hundreds of

colour maps and thousands of photographs on a single CD which also contains extensive audio,
animation and textual data. [15].

497

a)Original b) DCT:QF3:CR8:I

¢)DCT: QF10: CR11.6:1

e)DCT: QF25: CR14.2:1

d)DCT:QF20 :CR13.6:1

f)DifferenceMappingofOriginalandQF25

g)DC;P(8:1)wiih lBitError

Figure 9: b)-e) DCT Compressed Images of a) : QF (Quality Factor) in the range [1-25] (best-worst)
f) Comparison of a) and e)

g) Data Loss due to a Single Bit Error

498

Original

°li
,,

DCT:QF25:CR I1.6:1

Difference Mapping of Original and QF 25

Figure 10 : Edge Distortions Produced by DCT Compression

The large amount of self-similarity in "real-world" images enables fractal image compression

to achieve very high compression ratios, usually significantly higher than those for DCT

compression. But like DCT compression, fractal compression is unsuited to geometrical
images where self-similarity is not evident [17].

The effects of small numbers of bit errors _3n fractal compressed images can result in severe
degradation of the afflicted sub-blocks and propagate into the referenced self-similar sub-

blocks. However, the Iterative nature of fractal image generation means that these distortions
will have reduced contributions.

Since fractal compressed images are represented as mathematical structures they are size-

independent, Compression ratios can therefore be increased by comparing the size of the
fractal form to the size of the enlarged original, rather than the original itself.

Compression oflnstrumentation Data

The compression of instrumentation data is a comparatively neglected area. This can be

explained by the variance in byte lengths and also the application specific nature of generated
sources. However, one method which can be more generally employed is difference modulation,

whereby data symbols are encoded as the difference (positive or negative) f_om the previous
symbol. For example:

42 41 43 43 45 44 42 39 40

could be represented as;
42 - I +2 0 +2 - 1 -2 -3 + I

which, of course, could be easily compressed by using fewer bits to represent the differences.
Instrumentation data is suited to difference modulation since it often involves either visible

trends relating to gradual changes in a monitored process, or relatively small perturbations

499

centredaboutsomemeanvalue. Differencemodulation is also useful in audio compression
applications, wheretrends can be identified in the source waveform. In applications were
lossescan be tolerated,the quantisationof differencescanachievefurther compression.
In thepresenceof channel errors differencemodulationwill result in error propagationsince
eachof the symbolsmeasuresitselfagainstits predecessor.Theresultant shift causedby a bit
errorwill bereplicatedin all subsequentsymbolsondecompression,propagatinguntil the end
ofthe datasequenceoruntil thenext true measurementis parsed.

Conclusion

In the absence of data compression many systems, when afflicted by uncorrected channel

errors, will suffer only localised losses in data integrity, i.e. will fail gracefully.. However,

similar errors in systems using data compression can have disastrous results. For this reason

users of computer disk compression are advised to take regular backups since: "if something

does go wrong, it is llkely to be major".[18].

The results of transmission errors on different compression methodologies has been

demonstrated, and the need for robust error control emphasised. This control should be

determined by the channel error statistics and the error tolerance of the system. In addition to

error control coding, piece-wise compression, resynchronisation markers and deep

interleaving can also be employed to limit the propagation of errors and reduce the correction

burden placed on the error control coding.

Acknowledgements

Much of the work presented here was sponsored by British Gas Plc, whose financial and

technical support has been greatly appreciated. I am also very grateful for the interest and

support given by IC! Imagedata which has enabled the publication of this work. Finally, I
would llke to thank to my research supervisor, Prof.B.K.Middleton, and Dr.B.Bani-Eqbal (Dept.

Computer Science, University of Manchester) for his technical advice on fractal and DCT

compression implementations.

References

[1] The Hidden Benefits of Data Compression

D.Powell

Networking Management, Vol.7, No. I0, October 1989, pp46-54

[2] The Compression Wars
J.McLeod

Electronics, Voi.64, September 9 I, pp27-28

[31 Performance Analysis of Reversible Image Compression Techniques

for High-Resolution Digital Teleradiology

G.R.Kuduvalli and R.M.Rangayyan
IEEE Transactions on Medical Imaging, Vol. I I, No.3, September

1992, pp430-445

500

[4]

[5]

[8[

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Recent Advances in Lo_less Coding Technlques
G.S .Yovanof

Proc-27th Int. Telemetric Conf. ITC91, pp7-19

Data Compression
A.Booksteln and J.A.Storer

Information Processing and Management, Vol 28, No.6, 1992, pp675-
680

Overview of Huffman Encoding as [a] Compression Technique
K.Anderson

Computer Technology Review, Vol. I I, No.6, 199 I, pp97- I 01

Data Compression

D.A.Lelewer and D.S.Hirschberg

ACM Computing Surveys, Vol. 19, No.3, September 1987, pp261-296

An Introduction to Aritlunetic Coding

G.G.Langdon
IBM Journal of Research and Development, Voi.28, No.2, March

1984, pp135-149

Piecewise Arithmetic Coding
J.Leuhola and T.Ralta

Proceedings of DCC'91, pp33-42

A Un/versal Algorithm for Sequential Data Compression

J.Ziv and A.Lempel
IEEE Trans IT, IT-32, No.3,May 1977,pp337-343

Compression of Individual Sequences via Variable-Rate Coding

J.Ziv and A.Lempel

IEEE Trans IT, IT-24, No.5,Sept 1978, pp530-536

A Technique for High-Performance Data Compression
T.A.Welch

IEEE Computer, Vol. 17, No.6, June 1984, ppS- 19

Text Compression
T.C.Ben, J.G.Cleary and I.H.Witten

Published by Prentice Hall, Englewood Cliffs,NJ. 1990

The JPEG Still Picture Compression Standard
G.K.WaUace

Communications of the ACM, Voi.34, No.4, April 1991, pp31-44

Fractal Image Compression

M.F.Barnsley and L.P.Hurd

Published by AK Peters Ltd, 1993, ISBN 1-56881-000-8

Advances in Digital Image Compression Techniques
G .Lu

Computer Communications, Vol 16, NO.4, April 1993, pp202-214

501

[17]

[18]

Fractals Transform Image Compression

A.Wright
Electronics World and Wireless World, March 1992, pp208-211

Data Compression Software
R. Milton

Computing, 22 July 1993, pp19-20

502

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public reportingburden for this co act on of information is estimated to average 1 hourper response, includingthe time for reviewing instructiOnS, searching existingdata sources,
gathering and ma ntein ng he data needed, and completing end reviewingthe collectionof information. Send comments regardingthis burden estimate or any other aspect of this
coflectionof information, including suggestions for reducingthis burden, to Wash ngtoo Headquarters Servces, D rec orate for InformationOperations and Reports, 1215 Jefferson
Davis Highway,Suite 1204, Arlington,VA 22202-4302, and to the Office of Management and Budget, Paperwork ReductionProject (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1993 Conference Publication_ October 19-21 r 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Third NASA Goddard Conference on Mass Storage Systems and

Technologies

6. AUTHOR(S)

Benjamin Kobler and P. C. Hariharan, Editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center

Greenbelt, Maryland 20771

9. SPONSORING / MONITORING ADGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

11. SUPPLEMENTARY NoTEs

Kobler: Goddard Space Flight Center, Greenbelt, Maryland;
Hariharan: Systems Engineering and Security, Inc., Lanham, Maryland.

505

8. PEFORMING ORGANIZATION

REPORT NUMBER

12a. DISTRIBUTION / AVAILABILITY STATMENT

Unclassified - Unlimited

Subject Category 82

94B00057

10. SPONSORING I MONITORING

ADGENCY REPORT NUMBER

NASA CP-3262

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report contains copies of nearly all of the technical papers and viewgraphs presented at the

Goddard Conference on Mass Storage Systems and Technologies held in October 1993. Once again,

the conference served as an informational exchange forum for topics primarily relating to the ingestion

and management of massive amounts of data and the attendant problems involved. Discussion topics

include the necessary use of computers in the solution of today's infinitely complex problems, the need

for greatly increased storage densities in both optical and magnetic recording media, currently popular

storage media and magnetic media storage risk factors, data archiving standards including a talk on the

current status of the IEEE Storage Systems Reference Model (RM). Additional discussion topics

addressed System performance, data storage system concepts, communications technologies, data

distribution systems, and finally, a talk on data compression and error detection and correction.

14. SUBJECT TERMS

Magnetic tape, magnetic disk, optical disk, mass storage, software storage,
digital recording, data compression

17. SECURITYCLASSIRCATION 18. SECURITYCLASSIRCATION
OFREPORT OFTHISPAGE

Unclassified Unclassified

NSN7540-01-280-5500

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

514
16. PRICE CODE

20. LIMITATION OF AB,_T_ACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39.1B

= _

SA __- _
NTER FOR AEROSPACE INFORMATION -- :_:_-?- - --

ACCESSIONING _-_.=- =_.=...... _ - -
800 ELKRIDGE LANDING ROAD _
LINTNICUM HEIGHTS MO 210902934 .--

